A template method defines the program skeleton of an algorithm. One or more of the algorithm steps can be overridden by subclasses to allow differing behaviors while ensuring that the overarching algorithm is still followed.
In object-oriented programming, first a class is created that provides the basic steps of an algorithm design. These steps are implemented using abstract methods. Later on, subclasses change the abstract methods to implement real actions. Thus the general algorithm is saved in one place but the concrete steps may be changed by the subclasses.
Ex -1 - Junit TestCase, we need to override the setUp & tearDown methods, while executing the algorithem method - run, implementation of these methods will be executed as per algorithm in run method.
Ex-2: The
In object-oriented programming, first a class is created that provides the basic steps of an algorithm design. These steps are implemented using abstract methods. Later on, subclasses change the abstract methods to implement real actions. Thus the general algorithm is saved in one place but the concrete steps may be changed by the subclasses.
Ex -1 - Junit TestCase, we need to override the setUp & tearDown methods, while executing the algorithem method - run, implementation of these methods will be executed as per algorithm in run method.
Ex-2: The
process()
method of the RequestProcessor uses the template method design pattern./** * An abstract class that is common to several games in which players play against * the others, but only one is playing at a given time. */ abstract class Game { protected int playersCount; abstract void initializeGame(); abstract void makePlay(int player); abstract boolean endOfGame(); abstract void printWinner(); /* A template method : */ public final void playOneGame(int playersCount) { this.playersCount = playersCount; initializeGame(); int j = 0; while (!endOfGame()) { makePlay(j); j = (j + 1) % playersCount; } printWinner(); } } //Now we can extend this class in order //to implement actual games: class Monopoly extends Game { /* Implementation of necessary concrete methods */ void initializeGame() { // Initialize players // Initialize money } void makePlay(int player) { // Process one turn of player } boolean endOfGame() { // Return true if game is over // according to Monopoly rules } void printWinner() { // Display who won } /* Specific declarations for the Monopoly game. */ // ... } class Chess extends Game { /* Implementation of necessary concrete methods */ void initializeGame() { // Initialize players // Put the pieces on the board } void makePlay(int player) { // Process a turn for the player } boolean endOfGame() { // Return true if in Checkmate or // Stalemate has been reached } void printWinner() { // Display the winning player } /* Specific declarations for the chess game. */ // ... }